

Uma experiência prática na criação e implementação sonora para videogames

MODALIDADE: COMUNICAÇÃO DE INICIAÇÃO CIENTÍFICA/TCC

SUBÁREA: Composição e Sonologia

Matheus Gomes Teixeira da Paz Universidade Estadual de Maringá (UEM) math.gtpaz@gmail.com

Rael Bertarelli Gimenes Toffolo Universidade Estadual do Paraná (UNESPAR) Programa de Pós-graduação em Música da UEM rael.gimenes@gmail.com

Resumo: Este artigo investiga o processo criativo na construção sonora para videogames, com foco na atuação do compositor e nas especificidades envolvidas na criação e implementação de áudio interativo. O objetivo é discutir os desafios estéticos e técnicos desse processo, com ênfase no uso do *middleware* de áudio FMOD. A pesquisa fundamenta-se em autores como Collins (2008), Jørgensen (2007), Meneguette (2016) e Camargo (2018), além de abordagens práticas da produção sonora em jogos digitais. Como metodologia, foi desenvolvido um protótipo de jogo com o intuito de simular situações reais de design e composição sonora, permitindo testar, aplicar e analisar diferentes estratégias sonoras, bem como compreender como se dão todas as etapas do processo de criação sonora para games — desde sua concepção até as etapas finais de implementação. Os resultados indicam que a familiaridade do compositor com todas as etapas permite ampliar sua autonomia criativa e sua colaboração com outras áreas do desenvolvimento.

Palavras-chave: Composição musical, Videogame, Middleware de áudio, Implementação de áudio

A Practical Experience in Audio Creation and Implementation for Video Games

Abstract: This article investigates the creative process in sound design for video games, focusing on the role of the composer and the specificities involved in the creation and implementation of interactive audio. The aim is to discuss the aesthetic and technical challenges of this process, with emphasis on the use of the FMOD audio middleware. The research is grounded in authors such as Collins (2008), Jørgensen (2007), Meneguette (2016), and Camargo (2018), as well as in practical approaches to sound production in digital games. As a methodology, a game prototype was developed to simulate real scenarios of sound design and composition, allowing for the testing, application, and analysis of different audio strategies, as well as an understanding of the full process of sound creation for games — from initial conception to the final stages of implementation.

The results indicate that the composer's familiarity with all stages enhances creative autonomy and strengthens collaboration with other areas of development.

Keywords: Musical composition, Video game, Audio middleware, Audio implementation

Introdução

Nas últimas décadas, a indústria de jogos eletrônicos passou por um crescimento expressivo, consolidando-se como uma das principais expressões culturais e econômicas da contemporaneidade. Pesquisas especializadas apontam para a expansão contínua do número de jogadores, abrangendo diferentes faixas etárias e contextos socioculturais, e evidenciando o alcance global desse fenômeno (Pesquisa Game Brasil, 2022; Newzoo, 2022). Paralelamente, o campo do áudio nos videogames também passou por transformações significativas, impulsionado pelo surgimento de ferramentas especializadas — como os *middlewares*¹ de áudio — e pela consolidação de técnicas, práticas e teorias voltadas à criação e implementação sonora em ambientes interativos (Collins, 2008; Jørgensen, 2007; Meneguette, 2016; Camargo, 2018). Esse cenário contribuiu para a valorização crescente de profissionais especializados em áudio para jogos, como compositores e designers de som, que passaram a exercer papel central no desenvolvimento.

Neste contexto, o presente artigo discute o que um compositor precisa saber para atuar na criação sonora para jogos eletrônicos, com ênfase nas particularidades do processo criativo envolvido. Para isso, partimos de uma experiência prática de criação e implementação sonora em um protótipo de jogo desenvolvido especialmente para esta pesquisa. Esse protótipo foi construído na *game engine*² Unity, responsável pela lógica do jogo, enquanto o *middleware* FMOD foi utilizado para criar, organizar e implementar os elementos sonoros no ambiente interativo.

Buscamos demonstrar, a partir de uma proposta metodológica baseada em prática composicional, como o processo de criação sonora em jogos difere substancialmente de abordagens tradicionais e lineares, como as voltadas à música de concerto, cinema ou música

² Game engines, ou motores de jogo, são softwares utilizados para o desenvolvimento de jogos eletrônicos. Os recursos de uma engine possibilitam gerar, por exemplo, o gráfico, a física e o som dos jogos.

¹ *Middlewares* são *softwares* que se conectam a outros *softwares* para fornecer algum tipo de serviço ou funcionalidade. No contexto dos videogames, *middlewares* de áudio são os softwares que facilitam e otimizam a inserção de áudio nos jogos.

popular. Ao lidar com interatividade e lógica não linear, o compositor se depara com exigências que transformam sua maneira de estruturar o material sonoro. Tais exigências envolvem não apenas escolhas musicais, mas também a consideração de limitações técnicas — como os recursos dos *middlewares*, a lógica de acionamento sonoro e as formas de controle dos parâmetros de jogo — e, sobretudo, a atenção à funcionalidade e coerência do som no universo ficcional.

Este artigo está estruturado em três partes. Na primeira, apresentamos um panorama conceitual sobre o som nos jogos eletrônicos, com foco em suas funções estéticas e funcionais, suas especificidades técnicas e seu papel na experiência do jogador (Collins, 2008; Jørgensen, 2007; Meneguette, 2016; Camargo, 2018). Em seguida, discutimos as ferramentas utilizadas na criação e implementação sonora, com destaque para o FMOD (Horowitz & Looney, 2014; Zdanowicz & Bambrick, 2018; Firelight Technologies, 2024). Por fim, apresentamos a criação e implementação sonora no protótipo de jogo, a fim de demonstrar como essas dimensões — conceitual, técnica e composicional — se articulam na prática cotidiana do compositor, respondendo à pergunta central deste trabalho.

Com isso, buscamos contribuir para a compreensão das especificidades do fazer composicional em jogos digitais, destacando a necessidade de estratégias dinâmicas, de um domínio técnico básico das ferramentas e de uma abordagem criativa que considere o som como parte ativa da experiência interativa. Esperamos que as reflexões aqui apresentadas colaborem com o avanço da pesquisa em música aplicada a jogos e com a formação de compositores interessados nos desafios estéticos e criativos deste campo em expansão.

1. Panorama conceitual

A criação sonora para jogos digitais exige a compreensão dos princípios que regem a lógica interativa dessas mídias. Ao contrário de formas lineares como o cinema ou a música de concerto, os jogos apresentam fluxos imprevisíveis de tempo e ação, demandando do som comportamentos reativos e adaptativos. Nesse contexto, o compositor ou designer de som precisa dominar conceitos fundamentais que abrangem desde a construção de ambientes imersivos até o uso de técnicas dinâmicas, considerando também o papel funcional do som na experiência do jogador.

O conceito de imersão é central no universo dos videogames. McMahan (2003) e Murray (apud Massarolo & Mesquita, 2014) defendem que a imersão ocorre quando o jogador se engaja plenamente com o universo proposto, o que depende de uma construção coesa entre imagem, som, jogabilidade e narrativa. Nesse cenário, a dimensão sonora é crucial: mais do que perseguir realismo técnico, o som precisa estar em sintonia com a lógica e a estética do jogo. Camargo (2018) contribui a essa discussão ao propor a distinção entre paisagem tópica — sons com fonte visível em cena — e paisagem atópica — sons sem fonte definida, mas que reforçam a ambientação e a coerência interna do mundo ficcional. O equilíbrio entre essas camadas colabora para criar uma experiência sensorialmente convincente e envolvente, na qual o som atua como elemento estruturante da imersão.

Collins (2008) distingue três formas de comportamento sonoro nos jogos: áudio interativo, que responde diretamente às ações do jogador; áudio adaptativo, que reage a mudanças internas do sistema do jogo; e áudio dinâmico, que engloba ambos. Essa característica dinâmica leva à extrapolação de uma tipologia já consagrada no audiovisual, que separa os sons entre diegéticos — pertencentes ao universo ficcional — e extradiegéticos. Jørgensen (2007) propõe o conceito de som transdiegético para descrever fenômenos híbridos, como sons que influenciam as ações do jogador — mesmo não sendo diegéticos — ou que comunicam informações a partir de uma perspectiva externa — ainda que sejam diegéticos. Essas classificações ajudam a compreender a lógica sonora em ambientes interativos, nos quais os fluxos sonoros são condicionados à *gameplay*. O compositor, nesse cenário, deve pensar o som como parte de um sistema responsivo, em que música e efeitos se articulam em tempo real, conforme a lógica do jogo e o comportamento do jogador.

Meneguette (2016) propõe três conceitos essenciais para construir uma identidade estética e funcional nos jogos: paleta sonora, assinatura sonora e caracterização ludofuncional. Definir uma paleta sonora significa escolher estrategicamente os sons que compõem o universo do jogo, garantindo unidade e coerência estética. Ao atribuir sonoridades únicas a objetos, ações ou personagens, o designer de som estabelece o que o autor chama de assinatura sonora — elemento que favorece o reconhecimento imediato de eventos específicos no jogo. A caracterização ludofuncional, por sua vez, vai além da identificação, conferindo aos sons um papel funcional, capaz de influenciar as decisões e comportamentos do jogador. Essas

abordagens fortalecem a coerência do mundo ficcional e ampliam o potencial expressivo do som, tornando-o parte ativa da experiência imersiva e interativa.

Quanto à música, os autores destacam duas técnicas composicionais amplamente adotadas na indústria dos jogos: sobreposição vertical e sequenciamento horizontal (Collins, 2008; Meneguette, 2011, 2016; Horowitz & Looney, 2014; Roveran, 2017; Zdanowicz & Bambrick, 2020). A sobreposição vertical divide a música em camadas simultâneas que podem ser ativadas ou desativadas conforme o estado do jogo. Já o sequenciamento horizontal organiza a música em blocos sucessivos, permitindo transições entre trechos curtos conforme a lógica da *gameplay*. Essas técnicas são viabilizadas por *softwares* especializados chamados *middlewares* de áudio, que permitem ao compositor desenvolver comportamentos musicais dinâmicos e responsivos, integrando criação artística e lógica interativa.

2. Middlewares de áudio

O papel dos *middlewares* de áudio é possibilitar a implementação de comportamentos sonoros dinâmicos de forma prática e acessível, permitindo aos compositores e designers de som que se concentrem nos aspectos criativos, sem a necessidade de lidar com os desafios técnicos da programação. Esses sistemas operam integrados às *game engines*, substituindo seus recursos nativos de áudio. Eles oferecem interfaces gráficas acessíveis e diversos recursos especializados que permitem criar comportamentos sonoros responsivos, ajustados em tempo real às mudanças do jogo.

Dentre as principais vantagens de utilizar um *middleware* de áudio, Zdanowicz & Bambrick (2020) mencionam o maior controle sobre o espaço ocupado pelo áudio; a facilidade para configurar e implementar sistemas dinâmicos; a criação de perfis de depuração; testes mais fáceis para revisão; total controle sobre a mixagem final; além da maior simplicidade para adicionar variedade aos eventos sonoros. Ao utilizar essas ferramentas, portanto, o profissional passa a ter controle total sobre o resultado sonoro final, além de recursos que ampliam as possibilidades expressivas e viabilizam uma experiência sonora integrada à lógica interativa do jogo.

Entre os *middlewares* de áudio disponíveis no mercado, o FMOD (Firelight Technologies) é amplamente utilizado tanto em projetos independentes quanto por grandes

estúdios de jogos. Com uma interface gráfica minimalista e semelhante à DAWs,³ ele apresenta uma curva de aprendizado suave para profissionais da música, possibilitando a criação e organização de comportamentos musicais dinâmicos de forma intuitiva (Figura 1).

Figura 1 - Interface do FMOD Studio

Fonte: Elaborado pelo primeiro autor. Print Screen FMOD Studio 2.02.21 em Windows 10.

O fluxo de trabalho do FMOD consiste na criação e manipulação de *Eventos*. As amostras de áudio são posicionadas nas trilhas de áudio dos Eventos onde podem ser reproduzidas e manipuladas. A partir da configuração de parâmetros, o usuário é capaz de gerar dados de controle no *middleware* para serem compartilhados e acionados através do código do jogo. Esses parâmetros podem controlar diversos comportamentos e automações, permitindo, por exemplo, determinar quando *loopings* devem ser mantidos, quando a música deve transicionar para outro trecho ou arquivo de áudio, ou ainda ajustar efeitos sonoros. No projeto apresentado neste artigo, o FMOD foi utilizado como solução de áudio para o protótipo desenvolvido com a *game engine* Unity.

³ Sigla para Digital Audio Workstation (DAW) ou, em português, Estação de Trabalho de Áudio Digital.

3. Processo criativo

3.1 O protótipo de jogo⁴

O protótipo que desenvolvemos para esse projeto foi criado com a game engine Unity e fez uso de uma série de pacotes de ativos gratuitos disponibilizados na Asset Store.⁵ Ele não apresenta mecânicas sofisticadas nem uma proposta real de jogo, com desafios e objetivos concretos. Ao invés disso, nosso propósito com o protótipo foi criar um ambiente que simulasse o contexto de um jogo, permitindo que o processo de criação sonora não fosse pensado para um cenário hipotético, mas sim para um ambiente concreto, que nos permitisse lidar de forma prática com a aplicação do som.

O protótipo apresenta um cenário composto por dois ambientes principais — um diurno e outro noturno — interligados por uma caverna. O jogador é capaz de guiar o personagem através do caminho pela floresta, coletar itens e, ao final do percurso, enfrentar uma criatura Golem. Embora em muitos jogos a delimitação da ambientação sonora e efeitos sonoros possa estar subjugada aos elementos visuais, nossa configuração de cenário e a proposta de combate no final, bem como a adição de diferentes elementos visuais — mar, cachoeira, chuva —, foram pensadas para viabilizar ambientações sonoras e músicas distintas, que se ajustassem a essas atmosferas específicas.

3.2 Ambientação e efeitos sonoros

A Tabela 1 apresenta os sons ou efeitos diegéticos selecionados para compor a paisagem sonora de cada ambiente do jogo, com as classificações que atribuímos a esses sons com base nas tipologias apresentadas na Seção 1 (Collins, 2008; Jørgensen, 2007; Camargo, 2018). Tais classificações não são intrínsecas aos respectivos sons, mas resultam das escolhas feitas no design do jogo.

⁴ Para ilustrar o processo de criação e implementação sonora, disponibilizamos o link contendo o vídeo demonstrativo do protótipo: https://drive.google.com/drive/folders/1z9Y5YPaNRCkwtawMeauzLyGJsCzDYVt?usp=sharing

https://assetstore.unity.com/

Tabela 1 – Seleção e classificação dos sons

Ambiente	Som	Classificação de interatividade	Classificação diegética	Classificação de paisagem sonora	Variação interna de parâmetros
Diurno	Ondas	Adaptativo	Diegético	Tópico	Volume e filtragem
	Vento	Adaptativo	Diegético	Atópico	Volume
	Cachoeira	Adaptativo	Diegético	Tópico	Volume e filtragem
	Pássaros	Adaptativo	Diegético	Atópico	Volume, altura, panorização, intervalo de reprodução e arquivo de áudio
Caverna	Efeito de reverberação	Estático	Diegético	-	-
Noturno	Chuva	Adaptativo	Diegético	Tópico	Volume e filtragem
	Vento	Estático	Diegético	Atópico	Volume
	Trovões	Estático	Diegético	Atópico	Volume, altura, panorização, intervalo de reprodução e arquivo de áudio
	Uivos	Estático	Diegético	Atópico	Volume, altura, panorização, intervalo de reprodução e arquivo de áudio

Fonte: Elaborado pelo primeiro autor.

Ao decidir trabalhar com esses sons, foi imprescindível criar um cenário com elementos visuais que corroborassem a existência dos mesmos. Por exemplo, o som característico de uma cachoeira sugere que haja a representação visual de uma cachoeira — ou indica a existência de uma que esteja fora de vista. O mesmo serve para outros sons, como o canto dos pássaros. No protótipo, ainda que não exista nenhuma representação visual de pássaros no cenário diurno, a canto dos pássaros pôde ser adicionado ao ser coerente com o ambiente arborizado. Essa decisão enriquece a ambientação e amplia a sensação de imersão no espaço do jogo, permitindo que o jogador associe auditivamente a presença de vida animal, mesmo sem vê-la.

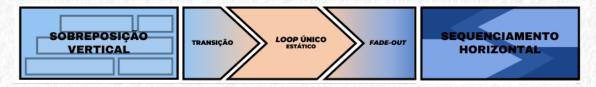
Ainda, decidir como cada som se comporta em relação ao jogador e ao espaço virtual é fundamental no processo de criação dos comportamentos dinâmicos no *middleware*, pois o designer de som precisa configurar, definindo parâmetros, se, e como, esses sons serão transformados a partir das ações do jogador ou de estados do jogo. Em nosso protótipo os sons de pássaros são compostos por diferentes amostras de áudio reproduzidas uma por vez, randomicamente, em intervalos de tempo irregulares. Cada amostra, quando reproduzida, sofre

pequenas variações de altura, intensidade e panorâmica, dando ao som um comportamento mais realista, sem padrões repetitivos identificáveis.

Outro ponto é que esses sons de pássaros, em nosso protótipo, têm comportamento adaptativo — assim como o som da cachoeira e do mar — sofrendo variação de intensidade conforme o jogador se aproxima ou se afasta da fonte sonora. Para outros sons, como os trovões e uivos, ainda que sofram variações a cada reprodução, optamos por não adicionar comportamento adaptativo, fazendo com que não sofram qualquer alteração a partir da posição do jogador ou condições de jogo. Esses comportamentos podem ser configurados com precisão utilizando recursos de *middlewares* de áudio, como o FMOD.

Para os efeitos sonoros, os mesmos procedimentos foram tomados. O som de deslocamento do personagem, por exemplo, reproduz uma amostra de áudio diferente a cada passo, com pequenas variações, e se modifica para cada tipo de terreno — areia, grama, madeira e cascalho. Esses cuidados são importantes para não fadigar o jogador diante de uma exposição repetitiva aos mesmos sons, mas são também determinantes para dar consistência e verossimilhança ao universo do jogo.

A escolha para o efeito sonoro de obtenção de itens foi um som estilizado e musical, diferente dos outros sons em que buscamos mais realismo. Nesse contexto, essa escolha faz com que esse som seja compreendido como extradiegético, pois não se espera que ele venha do mundo do jogo, mas sim da interface, com o objetivo de comunicar ao jogador que uma ação foi realizada.


3.3 Música

Para a música, o objetivo era explorar como as técnicas de sobreposição vertical e sequenciamento horizontal poderiam ser implementadas no *middleware* e utilizadas para enriquecer a narrativa. Dessa forma, aplicamos a técnica de sobreposição vertical ao primeiro cenário, diurno, onde a música vai sendo construída conforme o personagem progride no percurso e coleta novos itens. Enquanto isso, a técnica de sequenciamento horizontal foi aplicada na parte noturna da floresta, possibilitando alternar entre uma faixa de exploração e uma faixa de combate. A área da caverna apresenta uma única música que opera em *loop* enquanto o jogador estiver em seu interior. A Figura 2 apresenta um esquema visual do comportamento musical.

Figura 2 – Esquema visual do comportamento musical

Fonte: Elaborado pelo primeiro autor.

As decisões musicais buscaram garantir unidade estilística entre todas as faixas. Para isso, preservamos em diferentes músicas, por exemplo, o uso de certas coleções de notas, padrões melódico-rítmicos e instrumentação. A Tabela 2 apresenta a conexão entre a instrumentação de cada uma das músicas.

Tabela 2 – Instrumentação

Ambiente diurno	Caverna	Ambiente noturno				
Ambiente diurno		Exploração	Combate			
Flauta		Trompa				
Oboé		Violino 1 Violino2				
Piano	Clarinete					
Harpa	Fagote					
	Viola					
Violoncelo						

Fonte: Elaborado pelo primeiro autor.

Na música do primeiro ambiente, os instrumentos são introduzidos gradualmente conforme o jogador avança no cenário e coleta objetos. A harpa e o violoncelo abrem a cena com um material sem pulso marcado, sugerindo um estado inicial de contemplação e liberdade de exploração. Ao avançar, o ostinato do piano traz movimento à música, seguido pelas linhas melódicas da flauta e do oboé. A base do material gira em torno de uma coleção de notas que impede a formação de trítonos, segundas menores e sétimas maiores, favorecendo intervalos consonantes como quartas e quintas justas. Dissonâncias são introduzidas quando a narrativa

se encaminha para um cenário de suspense e mistério, marcado por elementos visuais que sugerem perigo, como um cadáver, uma caverna e um barco de velas negras.

Ao adentrar a caverna, uma transição é acionada e inicia uma nova faixa musical. A música da caverna, embora compartilhe elementos com a faixa anterior, é constituída principalmente por uma textura dissonante, criando um efeito de suspense que é intensificado pelos elementos visuais do cenário. O material melódico é apresentado pelo naipe das madeiras, enquanto as cordas sustentam notas longas. A música da caverna não apresenta comportamento dinâmico, com variações ou adaptações ao longo da reprodução. Ou seja, o arquivo de áudio é tocado sempre da mesma forma, indefinidamente. Decisões como essa podem apresentar um problema de fadiga auditiva dependendo da duração do *loop* e tempo de exposição. Em jogos completos e funcionais, o jogador poderia tomar mais tempo em um ambiente do que o esperado pelos desenvolvedores, tornando um *loop* como esse potencialmente prejudicial para a experiência do jogador.

Por fim, as últimas duas músicas são apresentadas no ambiente noturno. Elas foram construídas a partir da técnicas de sequenciamento horizontal, possibilitando serem alternadas conforme o estado do jogo. Uma delas destinada à exploração e a outra ao combate. Portanto, ao atingir o final do percurso e se deparar com o NPC Golem, a música se transforma para refletir adequadamente a situação de ação e perigo. Ao derrotá-lo, uma nova transição é acionada e a música retorna para faixa de exploração. Para que as transições funcionem de forma consistente e sem conflito perceptível, o material harmônico e a instrumentação precisam ser pensados de forma cuidadosa. Além disso, *stingers*⁶ também podem ser utilizados para mascarar possíveis conflitos durante a transição entre as faixas. Além de ambas as faixas compartilharem a formação de quarteto de cordas, o material sincopado característico da faixa de combate é introduzido de forma discreta ainda durante a exploração, o que contribui para reforçar a sensação de continuidade entre elas, fazendo com que pareçam partes de um mesmo tecido sonoro, em vez de composições separadas.

Para criar os comportamentos dinâmicos descritos — como as técnicas de sobreposição vertical e sequenciamento horizontal, além de transições, variações e gatilhos

⁶ "Stingers são fragmentos musicais curtos que tocam linearmente e são acionados por uma ação do jogador ou evento do jogo. Eles podem ser vistos como trechos musicais diretos, escritos como uma peça muito curta de música" (Zdanowicz & Bambrick, 2020, p. 145, tradução nossa).

musicais — o uso de um *middleware* de áudio se mostrou imprescindível. Ainda que seja tecnicamente possível desenvolver essas lógicas diretamente na *game engine*, esse processo costuma demandar conhecimentos avançados de programação e um tempo considerável de desenvolvimento, desviando o foco da criação artística para a resolução de problemas técnicos. O *middleware*, nesse sentido, atua como uma ponte entre o pensamento musical e a lógica computacional, permitindo ao compositor testar e configurar comportamentos sonoros de forma mais ágil e intuitiva, sem depender exclusivamente da equipe de programação. Isso torna o fluxo criativo mais fluido, favorecendo a experimentação e o refinamento das ideias musicais diretamente dentro da lógica interativa do jogo.

3.4 Implementação

Embora o trabalho do compositor ou designer de som costume se concentrar na criação dos sons e na configuração de seus comportamentos dentro do *middleware*, defendemos que há ganhos criativos em estar familiarizado com o processo de implementação sonora por meio da game engine. Ainda que essa etapa ultrapasse as competências tradicionalmente atribuídas à prática composicional, conhecer a cadeia completa — da concepção do som à sua implementação dentro do jogo — permite uma atuação mais integrada com a equipe de desenvolvimento e favorece decisões criativas mais conscientes. Essa visão ampliada pode tornar o compositor apto a propor soluções alternativas e inovadoras para a integração do som ao universo do jogo, ajudando a antecipar problemas de implementação e a contribuir de maneira mais efetiva para a construção da experiência interativa como um todo.

Parte do processo de implementação sonora pode ser feito diretamente na interface gráfica da *game engine*, anexando aos *Game Objects* os componentes pré-fabricados do FMOD responsáveis por acionar os eventos sonoros. Comportamentos mais elaborados — como modificar valores de parâmetros ou chamar *snapshots* — exigem a escrita de *scripts*. Em nosso protótipo, scripts foram necessários para configurar quando cada evento sonoro deveria ser tocado ou parâmetro alterado.

Sons tridimensionais —aqueles cuja intensidade varia conforme a posição do jogador em relação à fonte sonora — exigem um controle espacial contínuo. Para isso, *scripts* foram

⁷ Scripts são conjuntos de instruções em código de programação usados para automatizar tarefas ou adicionar funcionalidades específicas em um programa. Na Unity são escritos na linguagem C#.

utilizados para calcular a distância entre o jogador e a fonte sonora, e modificar, com base nesse valor, o parâmetro responsável pelo volume do som. Esse procedimento foi empregado, por exemplo, no som dos pássaros, como ilustrado na Figura 3: as esferas invisíveis no cenário delimitam a área em que o som pode ser escutado. À medida que o jogador se aproxima do centro dessas esferas, o canto dos pássaros se intensifica, e diminui conforme se afasta, simulando uma resposta natural à movimentação no ambiente.



Figura 3 – Implementação de sons tridimensionais

Fonte: Elaborado pelo primeiro autor. Print Screen Unity 2022.3.30f1 em Windows 10.

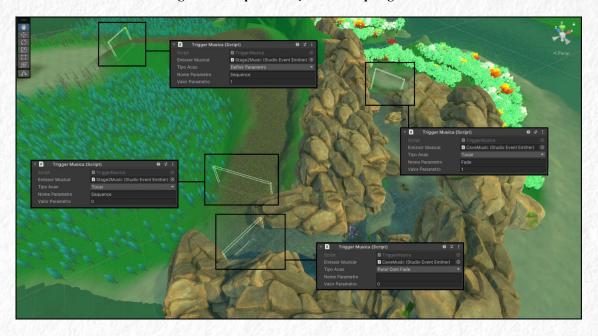

Outra estratégia recorrente na implementação envolveu a criação de paredes invisíveis e transponíveis no cenário, responsáveis por acionar eventos sonoros a partir da colisão com o jogador. Como ilustrado na Figura 4, esses objetos funcionam como gatilhos programados para reproduzir sons específicos ou modificar parâmetros do FMOD, permitindo transições musicais ou adaptações de trilhas em tempo real. Essa lógica também foi aplicada aos itens coletáveis, que, embora visíveis, operam sob o mesmo princípio dos colisores invisíveis.

Figura 4 – Implementação de sons por gatilhos

Fonte: Elaborado pelo primeiro autor. Print Screen Unity 2022.3.30f1 em Windows 10.

Tais estratégias, embora não esgotem todas as possibilidades de controle sonoro, representam soluções intuitivas e amplamente utilizadas. Compreender esse processo permite ampliar a autonomia do compositor e sua contribuição na construção estética e técnica do jogo.

Conclusão

Este artigo teve como objetivo investigar as especificidades do processo criativo na construção sonora para videogames, com foco na atuação do compositor e na importância de conhecer as ferramentas, técnicas e demais competências envolvidas nessa área de atuação. O processo composicional para o protótipo se mostrou bastante distinto de outras experiências criativas em música. A necessidade de integrar a composição à construção do jogo trouxe desafios específicos, exigindo pensar o material musical de maneira não linear, considerando a adaptabilidade como um princípio essencial na tomada de decisões.

As etapas de experimentação dos sons ao longo do processo criativo se mostraram fundamentais para alinhar as decisões sonoras à narrativa e à dinâmica do jogo. Ao ouvir os sons aplicados diretamente no cenário do jogo, não apenas garantimos que eles atendam ao

propósito desejado no contexto interativo, mas também nos permite ajustar elementos que, embora funcionem isoladamente, podem não se adequar à experiência geral do jogador.

Ao refletir sobre as especificidades do processo criativo, este trabalho oferece subsídios para a formação de compositores e designers de som interessados em atuar no desenvolvimento de jogos digitais, além de estimular uma participação mais efetiva desses profissionais no processo de desenvolvimento e construção do jogo. A investigação prática revelou ainda o potencial dos *middlewares* comerciais atualmente disponíveis para criação de áudio em jogos, como o FMOD, demonstrando serem plataformas amplamente acessíveis, capazes de viabilizar a criação de experiências sonoras complexas.

Por outro lado, essas ferramentas operam com base em materiais pré-compostos e logicamente organizados, impossibilitando a construção de sistemas sonoros mais abertos e processuais. Assim, embora a pesquisa tenha explorado técnicas como sobreposição musical e sequenciamento horizontal, não abordou formas de criação em tempo real — como a música gerada por algoritmos — que exigiriam outros tipos de abordagem e ferramentas.

Trabalhos futuros poderiam aprofundar essas possibilidades, investigando práticas e tecnologias voltadas à síntese sonora e à composição processual nos jogos. Esses caminhos apontam para um campo de pesquisa ainda em expansão, onde o som pode assumir funções estéticas, narrativas e interativas cada vez mais sofisticadas. Por fim, este trabalho reafirma a importância de compreender o áudio não como um elemento complementar, mas como parte estruturante da experiência dos videogames — e convida a novas investigações que fortaleçam o vínculo entre criação artística e desenvolvimento técnico nesse domínio.

Referências

CAMARGO, F. *INTERATIVIDADE E NARRATIVIDADE SONORA NOS GAMES*. 2018. Tese (doutorado) — Universidade Estadual de Campinas, Campinas, 2018.

COLLINS, K. *Game Sound*: An Introduction to the History, Theory, and Practice of Video Game Music and Sound Design. Cambridge: MIT Press, 2008.

FIRELIGHT TECHNOLOGIES. FMOD Studio User Manual 2.03.01. *FMOD*, 06 maio 2024b. Disponivel em: https://www.fmod.com/docs/2.03/studio/fmod-studio-concepts.html. Acesso em: 29 jun. 2024.

HOROWITZ, S.; LOONEY, S. *The Essential Guide to Game Audio*: The Theory and Practice of Sound for Games. Taylor & Francis, Focal Press, 2014. ISBN 9780415706704.

MASSAROLO, J.; MESQUITA, D. Imersão em realidades ficcionais. In: *Revista Contracampo*, v. 29, n. 1, ed. abril ano 2014. Niterói: Contracampo, 2014. p. 46-64.

MCMAHAN, A. Immersion, Engagement, and Presence: A Method for Analyzing 3-D Video Games. In: WOLF, M. J. P.; PERRON. B. (Eds.). *The video game theory reader*. Nova Iorque: Routledge, 2003.

MENEGUETTE, L. Áudio dinâmico para games: conceitos fundamentais e procedimentos de composição adaptativa. In: Simpósio Brasileiro de Jogos e Entretenimento Digital, 2011, Salvador. *Anais do X SBGames*. Salvador: Sociedade Brasileira de Computação, 2011.

MENEGUETTE, L. *A afinação do mundo virtual*: identidade sonora em jogos digitais. 2016. Tese (doutorado) — Pontificia Universidade Católica de São Paulo, São Paulo, 2016.

NEWZOO. *Newzoo Global Games Market Report 2022*. [S. 1.], 2022. Disponível em: https://newzoo.com/insights/trend-reports/newzoo-global-games-market-report-2022-free-version.

PESQUISA GAME BRASIL. *Pesquisa Game Brasil 9^a Edição Gratuita 2022*. [S. 1.], 2022. Disponível em: https://materiais.pesquisagamebrasil.com.br/2022-painel-gratuito-pgb22.

ROVERAN, L. *MÚSICA E ADAPTABILIDADE NO VIDEOGAME*: PROCEDIMENTOS COMPOSICIONAIS DE MÚSICA DINÂMICA PARA A TRILHA MUSICAL DE JOGOS DIGITAIS. Dissertação (mestrado) — Universidade Estadual de Campinas, Campinas, 2017.

ZDANOWICZ, G.; BAMBRICK, S. *The game audio strategy guide*: a practical course. New York: Taylor & Francis, Routledge, 2019. ISBN 9781138498334.

